Pages

Saturday, April 27, 2013

Analogous Electrical and Mechanical Systems

Contents

Background

It is possible to make electrical and mechanical systems using analogs.  An analogous electrical and mechanical system will have differential equations of the same form.  There are two analogs that are used to go between electrical and mechanical systems.  The anal

Schottky diode


The Schottky diode (named after German physicist Walter H. Schottky); also known as hot carrier diode is a semiconductor diode with a low forward voltage drop and a very fast switching action. The cat's-whisker detectors used in the early days of wireless can be considered primitive Schottky diodes.
When current flows through a diode there is a small voltage drop across the diode terminals. A normal silicon diode has a voltage drop between 0.6–1.7 volts, while a Schottky diode voltage drop is between approximately 0.15–0.45 volts. This lower voltage dro

Diode bridge



A diode bridge is an arrangement of four (or more) diodes in a bridge circuit configuration that provides the same polarity of output for either polarity of input. When used in its most common application, for conversion of an alternating current (AC) input into a direct current (DC) output, it is known as a bridge rectifier. A bridge rectifier provides full-wave rectification from a two-wire AC input, resulting in lower cost and weight as compared to a rectifier with a 3-wire input from a

Zener diode

Zener Diode.JPG
A Zener diode is a diode which allows current to flow in the forward direction in the same manner as an ideal diode, but will also permit it to flow in the reverse direction when the voltage is above a certain value known as the breakdown voltage, "zener knee voltage", "zener voltage" or "avalanche point".
The device was named after Clarence Zener, who discovered this electrical property. Many diodes described as "zener" diodes rely instead on avalanche breakdown as the mechanism. Both types are used. Common applications include providing a reference voltage for voltage regulators, or to protect other semiconductor devices from momentary voltage pul

Diode



In electronics, a diode is a two-terminal electronic component with an asymmetric transfer characteristic, with low (ideally zero) resistance to current flow in one direction, and high (ideally infinite) resistance in the other. A semiconductor diode, the most common type today, is a crystalline piece of semiconductor material with a p–n junction connected

Digital electronics


Digital electronics, or digital (electronic) circuits, represent signals by discrete bands of analog levels, rather than by a continuous range. All levels within a band represent the same signal state. Relatively small changes to the analog signal levels due to manufacturing tolerance, signal attenuation or parasitic noise do not leave the discrete envelope, and as a result are ignored by signal state sensing circuitry.
In most cases the number of these states is two, and they are represented by two voltage bands: one near a reference value (typically termed as "ground" or zero volts) and a value near the supply voltage, corresponding to the "false" ("0") and "true" ("1") values of the Boolean domain respectively.
Digital techniques are useful because it is easier to get an electronic device to switch into one of a number of known states than to accurately reproduce a continuous range of values.
Digital electronic circuits are usually

Electrical resistivity and conductivity



Electrical resistivity (also known as resistivity, specific electrical resistance, or volume resistivity) quantifies how strongly a given material opposes the flow of electric current. A low resistivity indicates a material that readily allows the movement of electri

Electricity

Multiple lightning strikes on a city at night
Lightning is one of the most dramatic effects of electricity.
Electricity is the set of physical phenomena associated with the presence and flow of electric charge. Electricity gives a wide variety of well-known effects, such as lightning, static electricity, electromagnetic induction and the flow of electrical current. In addition, electricity permits the creation and reception of electromagnetic radiation s

Electric vehicle



An electric vehicle (EV), also referred to as an electric drive vehicle, uses one or more electric motors or traction motors for propulsion. Three main types of electric vehicles exist, those that are directly powered from an external power station, those that are powered by stored electricity originally from an external power source, and those that are powered by an on-board electrical generator, such as an internal combustion engine (a hybrid electric vehicle) or a hydrogen fuel

Electric guitar

Godin LG-Squier Strat.jpg

               An electric guitar is a guitar that uses a pickup to convert the vibration of its strings into electrical impulses. The most common guitar pickup uses the principle of direct electromagnetic induction. The signal generated by an electric guitar is too weak to drive a loudspeaker, so it is amplified before sending it to a loudspeaker. Since the output of an electric guitar is an electric signal, the signal may easily be altered using electronic circuits to add "color" to the sound. Often the signal is modified using effects such as reverb and distortion.
Invented in 1931, the electric guitar became a necessity as jazz musicians sought to amplify their sound in the big band format. During the 1950s and 1960s, the electric guitar became the most important instrument in pop music.[1] It has evolved into a stringed musical instrument that is capable of a multitude of sounds and styles. It served as a major component in the development of rock and roll and many other genres of music.

Electric field







             An electric field surrounds electrically charged particles and time-varying magnetic fields. The electric field depicts the surrounding force of an electrically charged particle exerted on other electrically charged objects. The concept of an electric field was introduced by Micha

Electric power

 
Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second.
Electric power is usually produced by electric generators, but can also be supplied by chemical sources such as electric batteries. Electric power is generally supplied to busin

Operational amplifier

An operational amplifier (op-amp) is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output.[1] An op-amp produces an output voltage that is typically hundreds of thousands of times larger than the voltage difference between its input terminals.[2]
Operational amplifiers had their origins in analog computers, where they were used to do mathematical operations in many linear, non-linear and frequency-dependent circuits. Characteristics of a circuit using an op-amp are set by external components with little depend

Friday, April 26, 2013

Multimeter

A multimeter or a multitester, also known as a VOM (Volt-Ohm meter), is an electronic measuring instrument that combines several measurement functions in one unit. A typical multimeter would include basic features such as the ability to measure voltage, current, and resistance. Analog multimeters use a microammeter whose pointer moves over a scale calibrated for all the different measurements that can be made. Digital multimeters (DMM, DVOM) display the measured value in numerals, and may also display a bar of a length proportional to the quantity being measured. Di

Voltage

Voltage
AA AAA AAAA A23 battery comparison-1.jpg
Batteries are sources of voltage in many electric circuits
Common symbol(s): V , ∆v ...
SI unit: volt
Voltage, otherwise known as electrical potential difference or electric tension (denoted ∆V and measured in units of electric potential: volts, or joules per coulomb), is the electric potential difference between two points — or the difference in electric potential energy of a unit test charge transported between two points.[1] Voltage is equal to the work which would have to be done, per unit charge, against a static electric field to move the charge between two points. A voltage may represent either a source of energy (electromotive force), or it may represent lost, used, or stored energy (potential drop). A voltmeter can be used to measure the voltage (or potential difference) between two points in a system; usually a common reference potential such as the ground of the system is used as one of the points. Voltage can be caused by static electric fields, by electric current through a magnetic field, by time-varying magnetic fields, or a combination of all three.[2][3]

Electrical engineering

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electromagnetism. This field first became an identifiable occupation in the latter half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. It now covers a wide range of subfields including electronics, digital computers, power engineering, telecommunications, control systems, RF engineering, and signal processing.
Electrical engineering may include electronic engineering. Where a distinction is made, usually outside of the United States, electrical engineering is considered to deal with the problems associ